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On the other hand, they can be chosen to have the form 

vt=¼ ~ a~je~ where ~ a l j=0  mod 2 .  

A calculation shows that 

t~j= ½a~jej-½ajie~ 

and therefore alj=aj~ mod 2. The graph representing 
q¢ (Fig. 3) is obtained by joining the ith vertex to the 
j t h  vertex by an edge if and only ifa~j is an odd integer. 

Corollary: The number of such groups is bounded 
below by 2(n-1)(n-:)/Z/n[ and for n=2,3 ,4 ,5 ,6  is 
1,2, 3, 7,16 [for diagrams of the various graphs see 
Appendix 1 of Harary (1969)]. 

Theorem 4.2. The groups of arithmetic crystal class 
U m . . .  m ( n - 1  factors) are in one-one correspon- 
dence with the (non-directed) graphs with n - 1  ver- 
tices. 

Proof: The above description shows that each group 
determines a graph with n vertices, one of which is 
distinguished. An even number of edges end at each 
vertex. Removing all edges which end at the distin- 
guished vertex we obtain the required graph with n -  1 
vertices. 

Corollary: The number of such groups is bounded 
below by 2(n-~)("-2)/Z/(n- 1)! and for n=2 ,3 ,4 ,5 ,6  is 
1,2,4,11,34. 

I wish to thank Dr L. L. Boyle and Dr M. S. Pater- 
son for several helpful discussions. 
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About Quartets m Relation with the Invariant Phases of Triplets 
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On the basis that quartet invariants are the difference between triplet invariants, we have determined a 
theoretical distribution of the quartet invariant phases. New formulae to estimate triplet invariant 
cosines are described and the results they give for a known test structure are compared. 

Recently, Hauptman (1974) gave an estimate of the 
invariant cosine of the sum of phases of four linear 
dependent reflexions l,m,n,p such that the sum over 
each set of three indices is zero ( l+m+n+p=O).  
Schenk (1973) had already spoken of such invariants 
as quartets of the second kind, and showed that they 
are obtained by constructing the difference of the 
phases of two invariant triplets relative to the same 
reflexion H, e.g. 

~O H "~- ~O K "~  ~O H _ K = O~ H . K , 

and 
~off + (PL + ~on- L = a~, L • 

from which is derived the quartet ~0K + ~0n- K + ~0E + ~0L- n 
(the sum of indices of the four reflexions K, H - K ,  L, 
L - H  is actually equal to zero) with a phase equal to 
(~,.~- ~,~.,). 

The value of the invariant cosine c o s  (~OK~-~gH_K'~- 
~P2+ (PL-H) may be estimated from the moduli of seven 
structure factors Ex, EH_~, EL, EL-H and also EH, EK-L 
and EK+L-n. Such an estimation is more accurate than 
the estimation of the phases all. K or all. L of the gener- 
ating triplets each of which is computed from only 
three structure factors EH, Ex and EH-K or En, EL 
and En-L. 

Furthermore, different algebraic formulae have been 
described to compute the invariant cosine of the phase 
of a triplet from the moduli of the structure factors 
of the whole reciprocal space: (1) triple product for- 
mula (Hauptman, Fisher, Hancock & Norton, 1969) 
and (2) MDKS formula (Fisher, Hancock & Haupt- 
man, 1970). 

We intend, here, to compare results provided respec- 
tively by the estimation of quartet phases and by al- 
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gebraic computation of the invariant triplet phases. 
However, we first point out some theoretical implica- 
tions which result from the dependence of the quartets 
on their generating triplets. 

I. A conditional distribution function of invariant 
phases of quartets 

The theoretical distribution of the phases x of invariant 
triplets corresponding to a given A value [A= 
(2a3/a23/2)IEnEKEH_K]] may be defined by its proba- 
bility density 

1 
0(x)= 2nlo(A-----~ exp (A cos x) 

in the range ( - n ,  n) and extended by translation as a 
periodic function of period 2n. 

To integrate the exponential, it is generally easier 
to use a development in Bessel functions with imagi 
nary argument 

+00 

exp (A cos x )=  Io(A ) + 2 ~ In(A) cos nx . 
n = l  

The distribution function V(t )=  O(x)dx is there- 
o 

fore an odd function. As we intend to use values of x 
varying from - n  to +n ,  we normalize V(t) on a 
period of 2n instead of n as was done by Hauptman 
et al. (1969); then we have V(n)=½. 

In this paragraph, we intend to compute the proba- 
bility 

Prob (1~2- ~l  < a) = Prob [cos ( ~ 2 - ~ )  < cos a] 

where a is a constant such that 0 < a < n .  at and c~ 2 
are the phases of two invariant triplets corresponding 
to A values equal to A~ and A2. If these two triplets 
are relative to the same reflexion H then the desired 
probability is the cumulative probability of the phase 
of invariant quartets built from this reflexion. 

Let us call P(~I) the conditional probability 

P ( ~ X l )  = Prob (1~2- ax[ < a) ,  

when ~ is fixed. 
As P(cq) and O(cq) are even functions, the final in- 

tegration may be computed in the range 10, tel: 

Prob (Ice2- cql < a ) =  2 (0q)Q(al)da 1 . 

From the particular way that O(x) is defined, it is neces- 
sary to compute P(et) in two separate ranges for cq, 
10,n-~l and In-a,  nl. With the previous notation, we 
have: 

i f 0 < c q < n - a  

P (cq) = Prob (cq - a < a2 < ~1 + a) = V(cq + a) - V(~t - a) 

and if n -  a < a~ < n 

P (~x) = [ ½ -  ~'(~x - a)] + [ ½ -  ~u(2n - ~ - a ) ] .  

After integration, we obtain in the two cases the same 
expression for P(el) 

P(cq)-  1 {2alo(Az) 
2xlo(A2) 

+ 2  )--~1 In(-An2-------~)[sin n(oq+a)-sin n ( a l - a ) ]  } 

which may be also written, from the addition formula 
of sine functions, 

1 [2alo(A2) 
P ( ~ ' ) -  2~10(A2) 

+oo I,,(A2) ] 
+ 4  ~ - -  s i n n a c o s n ~  . 

n = l  F/ 

S To compute 1/[2nIo(AO] P(0q) exp (A~ cos ex)del, we 
o 

have to integrate terms of the form 

I '~ exp (A1 cos e~) cos neldel 
0 

S 1 = A1) + - -  cos n'el cos neldal • 
, =  0 1 r / t  

If n # n '  the corresponding integral is zero and if n - -n '  
it is equal to n/2. 

Finally, we have 

a 
Prob [I~2- ~xl < a]=  --  

7~ 

2 +oo In(A2)In(AO 
+ nlo(A2)Io(AO ~' n 2 sin na. 

n = l  

H. The estimation of the phase of triplet invariants 
from the corresponding estimation for quartets 

Now we consider a particular triplet invariant relative 
to the reflexion H. Its phase is O~n,K=O~o. We intend 
to compute the mean value m of the cosine of the dif- 
ference c~-~0 between the considered triplet and all the 
other triplets relative to the reflexion H for a given 
value of A. We have 

- -  cos (~-0c0) exp (A cos a)d~. m= nlo(A) o 

It is always possible to change the variable of in- 
tegration; we may suppose also that c~0 varies and ~ is 
fixed. Then, the constant A may be considered as the 
corresponding A value of the initially considered triplet. 

After integration we have 

zl(n) 
m = c o s  0c0. Io(A) " 

But m is also the mean value of the cosine of dif- 
ferent quartet invariants built from a given triplet and 
all the other triplets relative to the same reflexion H. 
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Then from the different estimations cos (a1-%) of 
quartet invariants, we estimate the cosine of triplet in- 
variants by 

I0(A) 
c o s % = ( c o s ( c q - % ) ) , .  11(A) " (1) 

As the number of quartets used to compute each triplet 
cosine invariant is always small (200 to 400), it is im- 
portant to know if the estimated cosine cos (cq-%) 
corresponds to a positive or a negative cos a~. Indeed, 
if equation (1) involves only ~ triplet phase invariants 
near to n, a negative cosine cos ~0 would be assumed 
spuriously as positive. To avoid this drawback, we 
use a two-stage estimation of the triplet cosine in- 
variants: in the first stage, temporary cosine invariants 
cos ~ are computed from (1); in the second, the final 
invariant cosines are computed from 

/0(,4) 
COS % =  <cos cz~ COS (~zi--~z0)), . II(A) " (1') 

If such a computation is not sufficiently accurate to 
provide the correct values of triplet cosine invariants, 
a rough sorting between the different cosine invariants 
may be achieved as in the case of the modified triple 
product formula. Then a correct estimate of these 
cosine invariants is obtained from the theoretical dis- 
tribution of triplet phases (Busetta & Comberton, 
1974). 

IH. Fast computation of the MDKS formula 

Equation (1) is now compared with the classical mod- 
ified triple product formula (Hauptman et al., 1969) 

IEnEKEn-~I cos %= (eLeL-(n-K)e~.-n)~. , 

where 
eL= I/IELI--<I/IELI)L 

and which may be also written (Busetta & Comberton, 
1974) 

[EHEKEn-KI COS ~o 

= <~, ~, _ ~(~,~_ ~ + 8 ,_  (~_ K)) >,  > ~/~. 

In (1) quartets are constructed only from the strongest 
reflexions (E>E0), and, among the seven structure 
factors used to estimate each quartet cosine invariant, 
only the terms IEL-r[ and lEL-(n-r)[ may be less than 
E0. From these considerations, (1) appeared strongly 
related to the D term of the MDKS formula (Fisher 
et al., 1970) 

D=(eL-tIIE, I>Eo, IE,+jI >E0>L, (2) 
where I= /7 ,  K, H -  K when J = K, H -  K, R respectively. 

It is possible to verify that (1) and (2) involve exactly 
the same structure factors; the only difference be- 
tween them is the mathematical function used to rep- 
resent the quartet cosine invariant; in (1) it corresponds 
to the exact mathematical estimation given by Haupt- 

man (1974), that is to say a series involving imaginary 
Bessel functions; in (2) it corresponds to (eL-k+ 
g L  -- (H  -- K) ) "  

Both representations have roughly the same be- 
haviour; they give negative values if the two structure 
factors involved are weak and positive values if they 
are large. 

In addition the consideration of quartet invariants 
which are differences between triplet invariants in- 
volving the same reflexion, provides a way to compute 
the D term of the MDKS formula by a fast process 
which was not obvious at the beginning. As soon as 
the ~2 relations involving the strongest E factors are 
obtained, the triplets related to the same reflexions H 
are combined two by two, for instance, the H, K 
triplet with the H , L  triplet; the eL-K and eL-(U-r) 
terms are directly available, and may be added simul- 
taneously to the corresponding terms Dn, r and Dn, L. 

As the same operation is done with triplet invariants 
involving the reflexions K and H - K ,  the Dn, r term 
will be computed on average for a number of eL-I 
contributors equal to 

2(nn + nr + nn_ g. - 3), 

where nn, nr, nn_r  are the number of ~2 relations in- 
volving respectively the three reflexions H, K, H - K .  

Then the mean number of contributors used in the 
estimation of the triplet cosine invariants may be esti- 
mated from the mean number of ~2 relations involving 
the same reflexion. 

In practice a good estimate of the triplet cosine in- 
variant is obtained as soon as the number of con- 
sidered Z2 relations is five times the number of re- 
flexions used. In this way, the estimation of triplet 
cosine invariants is less time consuming than the 
search of triplets themselves (that is to say the con- 
struction of the set of ~--2 relations) and thus may be 
used in crystal structure determination, even for large 
molecules. 

Finally one notices that, as previously, it may be 
better to use a two-stage estimation of the triplet cosine 
invariant, where the final D term would be obtained 
from 

D, ,K=(eL- ,D'z ,  slIELI>Eo, IEL+sI>Eo)L, (2') 

where D~,s represents a first computation of DL, s 
from (2). 

IV. Experimental results 

The triplet cosine invariants were computed for an or- 
thorhombic structure (Pna21, C20Si2H28, Z - 4 )  by the 
classical modified triple product formula, from the 
estimation of quartet cosine invariants (1'), by the semi- 
empirical equation (2'), and then compared them with 
their real values. 

For this purpose, the triplet invariants are arranged 
in groups of 100 elements in which the value of An,r  
may be considered as constant. Then they are sorted 
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Table 1. Comparbon of  the 1500 triplet cosine invariants o f  the test structure 

Theoretical Mean cosine invariant of the 50 strongest 
cosine invariant cosines in each group 

Experimental 
(A) mean cosine Estimated triple 
(A) invariant product formula Equation (19 Equation (2') 

0.8027 0.8673 0.8975 0.9061 0-9066 
0-7599 0.8122 0.8947 0-8748 0.8821 
0.7350 0.7594 0.8417 0.8244 0.8511 
0-7148 0.8428 0.9050 0.8811 0.8984 
0.6975 0.7310 0.7575 0.7667 0.7771 
0.6842 0.8077 0.8588 0.9121 0.8888 
0.6692 0-7922 0.8897 0.8903 0.8710 
0-6561 0.8093 0.8994 0.9159 0.9213 
0-6435 0-8260 0-914l 0.8749 0-8770 
0.6321 0.7547 0.8895 0-8775 0.8858 
0.6212 0.7880 0.8118 0.8678 0.8313 
0.6102 0.7948 0.8939 0.8044 0.8167 
0.6011 0.7541 0.8946 0.8029 0.8293 
0.5891 0.7391 0.7616 0.7889 0.8159 
0.5789 0.6488 0.6607 0.7280 0.7912 

in decreasing order of the estimated cosines. The ability 
of the different formulae to sort the triplet cosine in- 
variants may be estimated by comparing, in each 
group, the mean cosine invariant of the 50 first sorted 
triplets to the mean cosine invariant in the whole group. 
The results, obtained with our test structure, are given 
in Table 1. 

The results provided by the three formulae appear 
very similar, though (1') gives slightly less good results 
than the other formulae. They allow the determina- 
tion of invariant cosines near + 1.0 with good accuracy 
and may be used equally to select invariants for which 
the relation ~0~ + ~0r+ fpn- r=0  may be considered as 
nearly realized. 

The invariant cosines computed between 0 and - 1  
are less accurate, because some positive invariant 
cosines are computed spuriously as negative. Since for 
these latter a wrong negative estimation is obtained for 
all the quartets constructed with the other triplet in- 
variants, it seems that these problems depend on pe- 
culiarities of the structure, which cannot be allowed 
for in a general formula. 

As the number of contributors in (15 or (2') is small, 
we wanted to see if the observed errors depend on 
specific reflexions. For that purpose, when a reflexion 
interfered in (15 or (25, we summarized the involved 
error observed in the estimated triplet cosine invariant 
and then determined, for each reflexion, a mean in- 
volved error. This test showed us that no particular 

reflexion involved significant errors, and that involved 
errors are independent of the resolving power of the 
considered reflexions. This is important if we intend 
to estimate triplet cosine invariants for large mole'cules 
for which high resolution cannot be assumed; it in- 
dicated that the accuracy of the estimation will depend 
only on the number of contributors used in (15 or (25. 
Then a good estimation may be expected if the con- 
ditions set up at the end of §III  are obeyed. 

Equation (2') has been used successfully to estimate 
the triplet cosine invariants in the determination of 
luteoskyrin (P21212, Z =  4) C30012H22.2(½CH3-CO- 
CH3) and nogalamycin (P212:21, Z =  8) 2 x 
(C39NO16H4s. CHaOH), the crystal structures of which 
will be published later. 

The author thanks Professor H. Hauptman for valu- 
able discussions and his critical reading of this paper. 
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